skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bahrami, Faranak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Interplay of magnetism and electronic band topology in unconventional magnets enables the creation and fine control of novel electronic phenomena. In this work, we use scanning tunneling microscopy and spectroscopy to study thin films of a prototypical kagome magnet Fe3Sn2. Our experiments reveal an unusually large number of densely-spaced spectroscopic features straddling the Fermi level. These are consistent with signatures of low-energy Weyl fermions and associated topological Fermi arc surface states predicted by theory. By measuring their response as a function of magnetic field, we discover a pronounced evolution in energy tied to the magnetization direction. Electron scattering and interference imaging further demonstrates the tunable nature of a subset of related electronic states. Our experiments provide a direct visualization of how in-situ spin reorientation drives changes in the electronic density of states of the Weyl fermion band structure. Combined with previous reports of massive Dirac fermions, flat bands, and electronic nematicity, our work establishes Fe3Sn2as an interesting platform that harbors an extraordinarily wide array of topological and correlated electron phenomena. 
    more » « less
  2. Van der Waals (VdW) materials have opened new directions in the study of low dimensional magnetism. A largely unexplored arena is the intrinsic tuning of VdW magnets toward new ground states. Chromium trihalides provided the first such example with a change of interlayer magnetic coupling emerging upon exfoliation. Here, we take a different approach to engineer previously unknown ground states, not by exfoliation, but by tuning the spin-orbit coupling (SOC) of the nonmagnetic ligand atoms (Cl, Br, I). We synthesize a three-halide series, CrCl 3 − x − y Br x I y , and map their magnetic properties as a function of Cl, Br, and I content. The resulting triangular phase diagrams unveil a frustrated regime near CrCl 3 . First-principles calculations confirm that the frustration is driven by a competition between the chromium and halide SOCs. Furthermore, we reveal a field-induced change of interlayer coupling in the bulk of CrCl 3 − x − y Br x I y crystals at the same field as in the exfoliation experiments. 
    more » « less
  3. Recent reports of a large anomalous Hall effect (AHE) in ferromagnetic Weyl semimetals (FM WSMs) have led to a resurgence of interest in this enigmatic phenomenon. However, due to a lack of tunable materials, the interplay between the intrinsic mechanism caused by Berry curvature and extrinsic mechanisms due to scattering remains unclear in FM WSMs. In this contribution, we present a thorough investigation of both the extrinsic and intrinsic AHEs in a new family of FM WSMs, PrAlGe1−xSix, where x can be tuned continuously. Based on the first-principles calculations, we show that the two end members, PrAlGe and PrAlSi, have different Fermi surfaces, but similar Weyl node structures. Experimentally, we observe moderate changes in the anomalous Hall coefficient (RS), but significant changes in the ordinary Hall coefficient (R0) in PrAlGe1−xSix as a function of x. By comparing the magnitude of R0 and RS, we identify two regimes: |R0| < |RS| for x ≤ 0.5 and |R0| > |RS| for x > 0.5. Through a detailed scaling analysis, we uncover a universal anomalous Hall conductivity (AHC) from intrinsic contribution when x ≤ 0.5. Such a universal AHC is absent for x > 0.5. Our study, thus, reveals the significance of extrinsic mechanisms in FM WSMs and reports the first observation of the transition from the intrinsic to extrinsic AHE in PrAlGe1−xSix. 
    more » « less